Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Adv Sci (Weinh) ; 8(24): e2102330, 2021 12.
Article in English | MEDLINE | ID: covidwho-1599388

ABSTRACT

Immune modulation is one of the most effective approaches in the therapy of complex diseases, including public health emergency. However, most immune therapeutics such as drugs, vaccines, and cellular therapy suffer from the limitations of poor efficacy and adverse side effects. Fortunately, cell membrane-derived nanoparticles (CMDNs) have superior compatibility with other therapeutics and offer new opportunities to push the limits of current treatments in immune modulation. As the interface between cells and outer surroundings, cell membrane contains components which instruct intercellular communication and the plasticity of cytomembrane has significantly potentiated CMDNs to leverage our immune system. Therefore, cell membranes employed in immunomodulatory CMDNs have gradually shifted from natural to engineered. In this review, unique properties of immunomodulatory CMDNs and engineering strategies of emerging CMDNs for immune modulation, with an emphasis on the design logic are summarized. Further, this review points out some pressing problems to be solved during clinical translation and put forward some suggestions on the prospect of immunoregulatory CMDNs. It is anticipated that this review can provide new insights on the design of immunoregulatory CMDNs and expand their potentiation in the precise control of the dysregulated immune system.


Subject(s)
Cell Membrane/immunology , Cell- and Tissue-Based Therapy/methods , Immunotherapy/methods , Nanoparticles/therapeutic use , Animals , Disease Models, Animal , Humans , Immunomodulation , Mice
2.
J Lipid Res ; 62: 100129, 2021.
Article in English | MEDLINE | ID: covidwho-1440205

ABSTRACT

The significant morbidity and mortality associated with severe acute respiratory syndrome coronavirus 2 infection has underscored the need for novel antiviral strategies. Lipids play essential roles in the viral life cycle. The lipid composition of cell membranes can influence viral entry by mediating fusion or affecting receptor conformation. Upon infection, viruses can reprogram cellular metabolism to remodel lipid membranes and fuel the production of new virions. Furthermore, several classes of lipid mediators, including eicosanoids and sphingolipids, can regulate the host immune response to viral infection. Here, we summarize the existing literature on the mechanisms through which these lipid mediators may regulate viral burden in COVID-19. Furthermore, we define the gaps in knowledge and identify the core areas in which lipids offer therapeutic promise for severe acute respiratory syndrome coronavirus 2.


Subject(s)
COVID-19/immunology , Cell Membrane/immunology , Eicosanoids/immunology , SARS-CoV-2/physiology , Sphingolipids/immunology , Virus Replication/immunology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL